
© 2013 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.

Mastering Access Control Policies

Jeff Wierer, Identity and Access Management

November 13, 2013

Goals

• Know more about securing your AWS resources

• Get a deeper understanding of the policy language

• Learn some tips and tricks for most frequently asked
tasks

• Keep this a lively session via demos
– Amazon S3

– AWS IAM

– Amazon EC2

– Amazon DynamoDB

Before getting too deep… Let’s level set on

Identity and Access Management

Why IAM?

• One of customers’ biggest concerns when moving to
the cloud

CONTROL

• What do I do if…
– I want to control “Who can do what”?

– I want to implement security best practices?

– I want to be at least as secure as on premises?

– One of my employees leaves the company?

IAM Provides Granular Control to your AWS Account

You can grant or deny access by defining:

• Who can access your resources

• What actions they can take

• Which resources they can access

• How will they access your resources

This is described using a policy language

The Access Control Policy Language

• Two facets:

– Specification: defining access policies

– Enforcement: evaluating policies

The Policy Language is about Authorization

Specification

Policies

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:Get*", "s3:List*"],
 "Resource": "*"
 }
]
}

S3 Read-Only Access • JSON-formatted documents

• Contain statements (permissions)

which specify:

– What actions a principal can perform

– Which resources can be accessed

Example of an IAM user/group/role access policy

Anatomy of a statement

{
 "Statement":[{
 "Effect":"effect",
 "Principal":"principal",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value" }
 }
 }
]
 }

Principal

Action

Resource

Conditions

Conditions on request-time

metadata

• IP Address

• UserAgent

• date/time

Effect: Allow

Principal:123456789012:user/bob

Action: s3:*

Resource: jeff_bucket/*

Condition: Referer = example.com

Effect: Deny

Principal:123456789012:user/jim

Action: s3:DeleteBucket

Resource: jeff_bucket

Condition: Referer = example.com

Principal - Examples

• An entity that is allowed or denied access to a resource

• Principal element required for resource-based policies
<!-- Everyone (anonymous users) -->
"Principal":"AWS":"*.*"

<!-- Specific account or accounts -->
"Principal":{"AWS":"arn:aws:iam::account-number-without-hyphens:root" }
"Principal":{"AWS":"account-number-without-hyphens"}

<!-- Individual IAM user -->
"Principal":"AWS":"arn:aws:iam::account-number-without-hyphens:user/username"

<!-- Federated user (using web identity federation) -->
"Principal":{"Federated":"www.amazon.com"}
"Principal":{"Federated":"graph.facebook.com"}
"Principal":{"Federated":"accounts.google.com"}

<!-- Specific role -->
"Principal":{"AWS":["arn:aws:iam::account-number-without-hyphens:role/rolename"]}

<!-- Specific service -->
 "Principal":{"Service":["ec2.amazonaws.com"]}

Action - Examples

• Describes the type of access that should be allowed or denied

• Statements must include either an Action or NotAction element

<!-- EC2 action -->
"Action":"ec2:StartInstances"

<!-- IAM action -->
"Action":"iam:ChangePassword"

<!-- S3 action -->
"Action":"s3:GetObject“

<!-- Specify multiple values for the Action element-->
"Action":["sqs:SendMessage","sqs:ReceiveMessage"]

<--Use wildcards (* or ?) as part of the action name. This would cover Create/Delete/List/Update-->
"Action":"iam:*AccessKey*"

Understanding NotAction

• Lets you specify an exception to a list of actions

• Can sometimes result in shorter policies than using Action and denying many actions

• Example: Let’s say you want to allow everything but IAM APIs

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "NotAction": "iam:*",
 "Resource": "*"
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "iam:*",
 "Resource": "*"
 }
]
}

or

This is not a Deny. A user could still have a

separate policy that grants IAM:*
If you want to prevent the user from ever being

able to call IAM APIs use an explicit deny

Notice the

difference?

Resource - Examples

• The object or objects that are being requested

• Statements must include either a Resource or a NotResource element

<-- S3 Bucket -->
"Resource":"arn:aws:s3:::my_corporate_bucket/*“

<-- SQS queue-->
"Resource":"arn:aws:sqs:us-west-2:account-number-without-hyphens:queue1"

<-- IAM user -->
"Resource":"arn:aws:iam::account-number-without-hyphens:user/Bob"

<-- Multiple DynamoDB tables -->
"Resource":["arn:aws:dynamodb:us-west-2:account-number-without-hyphens:table/books_table",
 "arn:aws:dynamodb:us-west-2:account-number-without-hyphens:table/magazines_table"]

<-- All EC2 instances for an account in a region -->
 "Resource": "arn:aws:ec2:us-east-1:account-number-without-hyphens:instance/*"

Resource-Based Policies vs. IAM Policies

• IAM policies live with
– IAM Users

– IAM Groups

– IAM Roles

• Some services allow storing

policy with resources
– S3 (bucket policy)

– SNS (topic policy)

– SQS (queue policy)

 {
 "Statement":
 {
 "Sid":"Queue1_SendMessage",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": "sqs:SendMessage",
 "Resource":
 "arn:aws:sqs:us-east-1:444455556666:queue1"
 }
}

Principal required here

Conditions

• Conditions are optional

• Condition element can contain multiple
conditions

• Condition keys can contains multiple
values

• If a single condition includes multiple
values for one key, the condition is
evaluated using logical OR

• multiple conditions (or multiple keys in
a single condition) the conditions are
evaluated using logical AND

Condition Element

Condition 1:

 Key1: Value1A

Condition 2:

 Key3: Value3A

AND

AND
Key2: Value2A OR Value2B

OR OR Key1: Value1A Value1B Value 1C

Condition Example

"Condition" : {
 "DateGreaterThan" : {"aws:CurrentTime" : "2013-08-16T12:00:00Z"},
 "DateLessThan": {"aws:CurrentTime" : "2013-08-16T15:00:00Z"},
 "IpAddress" : {"aws:SourceIp" : ["192.0.2.0/24", "203.0.113.0/24"]}
}

Allows a user to access a resource under the following conditions:

• The time is after 12:00 p.m. on 8/16/2013

• The time is before 3:00 p.m. on 8/16/2013

• The request comes from an IP address in the 192.0.2.0 /24 or 203.0.113.0 /24 range

AND

OR

Policy Variables

Policy Variables

• Example use cases
– Allows users to self-manage their own credentials

– Easily set up user access to “home folder” in S3

– Manage EC2 resources using tags

• Benefits
– Reduces the need for user specific policies

– Simplifies overall management

• Variables based on request context
– Existing keys (aws:SourceIP, DateTime, etc.)

– New keys (aws:username, aws:userid, aws:principaltype, others)

– Provider-specific keys (graph.facebook.com:id, www.amazon.com:user_id)

The Anatomy of a Policy with Variables

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::myBucket"],
 "Condition":
 {"StringLike":
 {"s3:prefix":["home/${aws:userid}/*"]}
 }
 },
 {
 "Effect":"Allow",
 "Action":["s3:*"],
 "Resource": ["arn:aws:s3:::myBucket/home/${aws:userid}",
 "arn:aws:s3:::myBucket/home/${aws:userid}/*"]
 }
]
}

New Version is required

Variable in conditions

Variable in resource ARNs

Grants a user a home directory in S3 that can be accessed programmatically

Creating an S3 Home Directory
Demo

Giving a User a Home Directory From S3 Console

{
"Version": "2012-10-17",
 "Statement": [
 {"Sid": "AllowGroupToSeeBucketListInTheManagementConsole",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]},
 {"Sid": "AllowRootLevelListingOfThisBucketAndHomePrefix",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::myBucket"],
 "Condition":{"StringEquals":{"s3:prefix":["","home/"],"s3:delimiter":["/"]}}},
 {"Sid": "AllowListBucketofASpecificUserPrefix",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::myBucket"],
 "Condition":{"StringLike":{"s3:prefix":["home/${aws:username}/*"]}}},
 {"Sid":"AllowUserFullAccesstoJustSpecificUserPrefix",
 "Action":["s3:*"],
 "Effect":"Allow",
 "Resource": ["arn:aws:s3:::myBucket/home/${aws:username}",
 "arn:aws:s3:::myBucket/home/${aws:username}/*"]}
]
}

Necessary to

access the S3

console

Allows listing all

objects in a folder +

its subfolders

Allows modifying

objects in the folder

+ subfolders

Allowing an IAM User to Self-manage Secrets
Demo

Grant a User Access to the IAM Console

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "ViewListOfAllUsers",
 "Action": ["iam:ListUsers"],
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::123456789012:user/*"]
 },
 {
 "Sid": "AllowUserToSeeListOfOwnStuff",
 "Action": ["iam:GetUser","iam:GetLoginProfile",
 "iam:ListGroupsForUser","iam:ListAccessKeys"],
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::123456789012:user/${aws:username}"]
 }
]
}

• Underneath the covers the IAM

console calls these APIs

• Keep in mind the user will be able to

view limited details about all users

• The IAM user will not be able to

modify the other IAM users settings

• Alternatively, use the CLI

Allow IAM User to “Self-manage” from Console

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["iam:*AccessKey*","iam:*SigningCertificate*"],
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::123456789012:user/${aws:username}"]
 }
]
}

Edit these actions if you

want to modify user

permissions

Allowing an IAM user to self-manage vMFA
Demo

Allow User to Manage Own Virtual MFA from IAM

Console
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["iam:CreateVirtualMFADevice","iam:DeleteVirtualMFADevice"],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:mfa/${aws:username}"
 },
 {
 "Action": ["iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:user/${aws:username}"
 },
 {
 "Action": ["iam:ListVirtualMFADevices"],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:mfa/*"
 }
]
}

Amazon EC2 Resource Permissions

What Changes with EC2 Permissions

• Previously policies applied to all EC2 resources

• Permissions can now be set per-resource

• Ex: assign which users can stop, start, or terminate

a particular instance

EC2 Policies Before Resource Permissions

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource":"*"
 }
]
}

EC2 Policies After Resource Permissions

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource":"*",
 "Condition": {
 "StringEquals": {"ec2:ResourceTag/department": "dev"}
 }
 }
]
}

EC2 Policies After Resource Permissions

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource":
 "arn:aws:ec2:us-east-1:123456789012:instance/*",
 "Condition": {
 "StringEquals": {"ec2:ResourceTag/department": "dev"}
 }
 }
]
}

EC2 Policies After Resource Permissions

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource":
 "arn:aws:ec2:us-east-1:123456789012:instance/i-abc12345"
 }
]
}

Supported Resource Types

• Customer
gateway

• DHCP options
set

• Image

• Instance

• Instance profile

• Internet gateway

• Key pair

• Network ACL

• Network
interface

• Placement group

• Route table

• Security group

• Snapshot

• Subnet

• Volume

• VPC

Supports many different resource types, including:

APIs Currently Supported
Type of Resource Actions

EC2 Instances StartInstances, StopInstances, RebootInstances, TerminateInstances, RunInstance1

Customer gateway DeleteCustomerGateway

DHCP Options Sets DeleteDhcpOptions

Internet Gateways DeleteInternetGateway

Network ACLs DeleteNetworkAcl, DeleteNetworkAclEntry

Route Tables DeleteRoute, DeleteRouteTable

Security Groups AuthorizeSecurityGroupEgress, AuthorizeSecurityGroupIngress,

DeleteSecurityGroup, RevokeSecurityGroupEgress, RevokeSecurityGroupIngress

Volumes AttachVolume, DeleteVolume, DetachVolume

Accurate as of 11/13/2013 1Coming Soon

Categorize Your Resources

• Use tags as a resource attribute
– Allows user-defined models

– “Prod”/”Dev”

– “Cost Center X”

– “Department Y”

Using Amazon EC2 resource-level permissions
Demo

Locking Down Access to EC2 Instances

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "THISALLOWSEC2READACCESS",
 "Effect": "Allow",
 "Action": ["ec2:Describe*","elasticloadbalancing:Describe*",
 "cloudwatch:ListMetrics","cloudwatch:GetMetricStatistics",
 "cloudwatch:Describe*","autoscaling:Describe*"],
 "Resource": "*"
 },
 {
 "Sid": "THISLIMITSACCESSTOOWNINSTANCES",
 "Effect": "Allow",
 "Action": ["ec2:RebootInstances","ec2:StartInstances",
 "ec2:StopInstances","ec2:TerminateInstances"],
 "Resource":"arn:aws:ec2:us-east-1:123456789012:instance/*",
 "Condition": {"StringEquals":
 {"ec2:ResourceTag/Owner": "${aws:username}"}}
 }
]
}

New Version is required here

because we’re using variables

Allowed only if this tag

condition is true

Use variables for the owner

tag

Allows seeing everything from

the EC2 console.

Amazon DynamoDB

Fine-Grained Access Control New

Enables Sub-table and Per-action Access Control

GetItem

BatchGetItem

Query

GetItem

BatchGetItem

Query

PutItem

UpdateItem

BatchWriteItem

Horizontal or vertical access control Read-only or read-write access

DynamoDB Fine-Grained Access Control

• Grant or deny access to individual items by hiding tables or
index information
– Horizontally by matching primary key values

– Vertically by controlling which attributes are visible

• Use policy conditions to define level of access
– dynamodb:LeadingKeys – access items where the hash key value matches a

unique identifier (ex: aws:userid policy variable)

– dynamodb:Attributes – allows access to only a subset of attributes

– StringEqualsIfExists clause – ensures the app must always provide a list
of attributes to act opon

• You must include all primary and index key attributes if you use
dynamodb:Attributes

Configuring Fine-Grained Access Control
Demo

Example: Restricting Access to a Table
{
 "Version": "2012-10-17",
 "Statement": [{

"Effect": "Allow",
"Action": [

 "dynamodb:GetItem", "dynamodb:BatchGetItem","dynamodb:Query",
 "dynamodb:PutItem", "dynamodb:UpdateItem", "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"],
 "Resource": ["arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${www.amazon.com:user_id}"],
 "dynamodb:Attributes": [
 "UserId","GameTitle","Wins","Losses",
 "TopScore","TopScoreDateTime"]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

New Version is required

Hash key value must match the

user’s ID. Results will be

horizontally filtered.

Only return these attributes.

Results will be vertically filtered.

App must specify attributes.

Cannot request all.

Note that Scan is not included, because Scan would provide access to all of the leading keys

Let’s Finish Up with Enforcement

Policy Enforcement

• Remember policies can come from multiple places
– IAM users, roles, and groups

– AWS resources (S3, SQS, & SNS)

– Passed through federated users

• Well-defined evaluation logic
– A request can be allowed or denied

– “Deny” trumps “Allow”

– If not allowed, request is denied by default

– Permissions are union of all policies

Determining if a Request is Allowed or Denied

Final decision =“deny”

(explicit deny)

Yes

Final decision =“allow”

Yes

No
Is there an

Allow?

4

Decision

starts at Deny

1

Evaluate all

Applicable

policies

2

Is there an

explicit

deny?

3

No
Final decision =“deny”

(default deny)

5

• AWS retrieves all policies
associated with the user and
resource

• Only policies that match the action
& conditions are evaluated

• If a policy statement

has a deny, it trumps

all other policies

• Access is granted
if there is an
explicit allow and
no deny

• By default, a

implicit (default)

deny is returned

Testing Policies Using the Policy Simulator
Demo

https://policysim.aws.amazon.com

Summary
• IAM provides access control for your AWS account

• Use the policy language to allow or deny granular access to AWS
resources

– Users are denied access by default

– Denys trump allow

• All policies (user, group, resource-based) are evaluated for
authorization

• Use policy variables - they make life better!
– Simplifies policy management

– Reduces the need for individual user policies

• We're continuously enabling more granular control
– EC2 / RDS Resource-level permissions

– DynamoDB fine-grained access control

Additional Resources

• IAM detail page: http://aws.amazon.com/iam

• AWS forum: https://forums.aws.amazon.com/forum.jspa?forumID=76

• Documentation: http://aws.amazon.com/documentation/iam/

• AWS Security Blog: http://blogs.aws.amazon.com/security

• Twitter: @AWSIdentity

All IAM-Related Sessions at re:Invent

ID Title Time, Room

CPN205 Securing Your Amazon EC2 Environment with AWS IAM

Roles and Resource-Based Permissions

Wed 11/13 11am, Delfino 4003

SEC201 Access Control for the Cloud: AWS Identity and Access

Management (IAM)

Wed 11/13 1.30pm, Marcello 4406

SEC301 TOP 10 IAM Best Practices Wed 11/13 3pm, Marcello 4503

SEC302 Mastering Access Control Policies Wed 11/13 4.15pm, Venetian A

SEC303 Delegating Access to Your AWS Environment Thu 11/14 11am, Venetian A

Come talk security with AWS Thu 11/14 4pm, Toscana 3605

Please give us your feedback on this

presentation

As a thank you, we will select prize

winners daily for completed surveys!

SEC302

