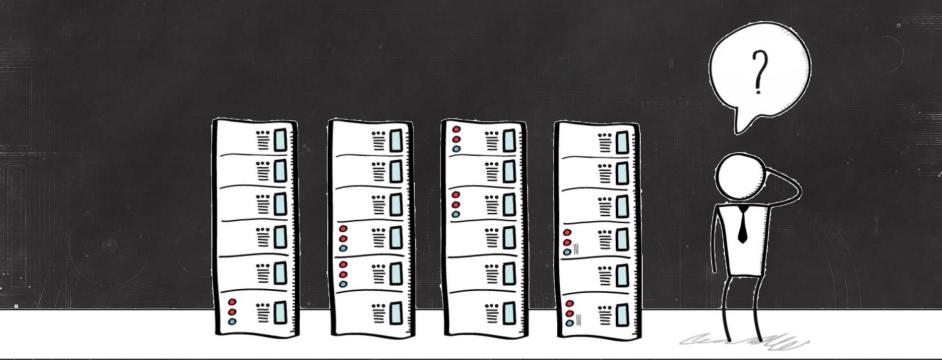
aws nvent

From One to Many: Evolving VPC Design

Robert Alexander, AWS Solutions Architect

November 14, 2013

© 2013 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.


Do Try This at Home!

All these designs are in use by customers

C

In a physical world you Design your network infrastructure... then spend a lot of time building and deploying

re:Invent

With Amazon Virtual Private Cloud, build and deploy virtual datacenters as fast as you design them

Get to know AWS CloudFormation

Source control and version control your datacenter

• Deploy infrastructure with one command

• Reproduce anywhere in the globe in minutes

• Segregation of Duties (SoD) between infrastructure and application owners

Elements of VPC Design

Amazon VPC

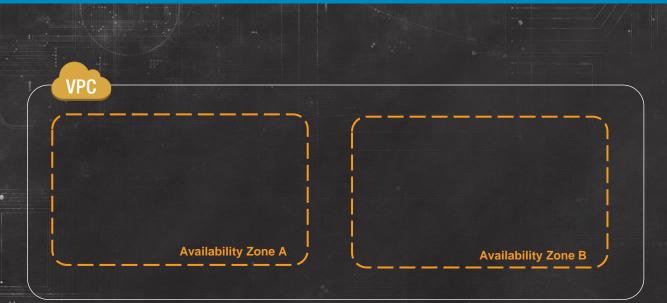
Router Internet Gateway

et Customer ay Gateway

Subnet

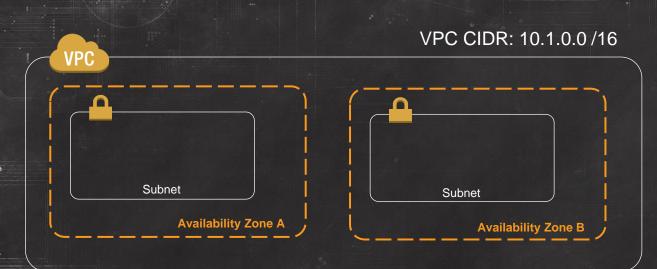
Virtual VPN Private Connection Gateway

....



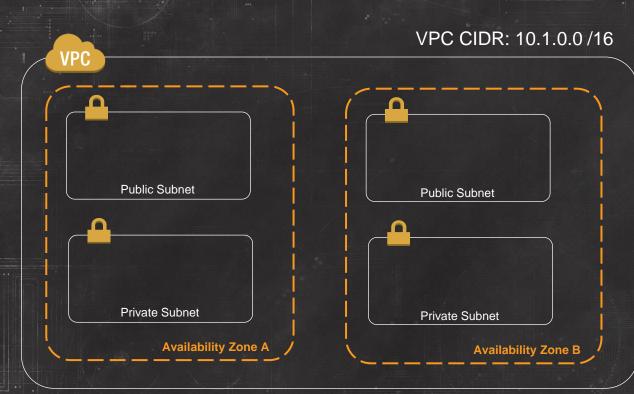
Route Table

Elastic Network Interface



- VPC is a private, isolated section of the AWS Cloud where you define the networking within
- A VPC can span all AZ's in an AWS Region
- Only one decision upon VPC creation:

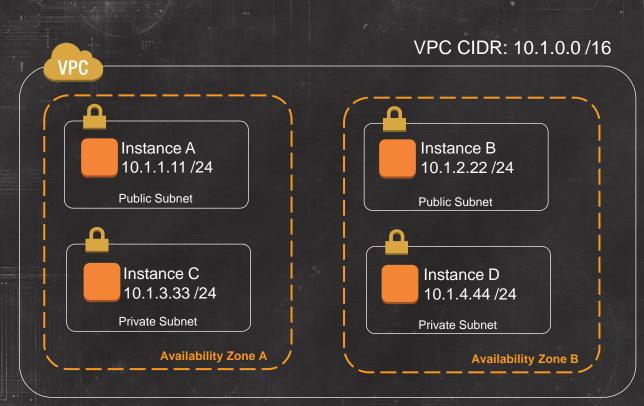
What IP CIDR block to assign?

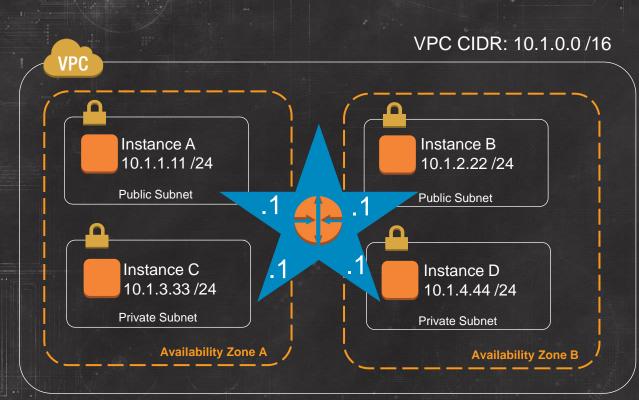

ie:Invent

Subnets are AZ specific

- On subnet creation only AZ, VPC and CIDR block designated
- Modifying a Subnet's Routing Table or Network Access Control Lists is done after creation

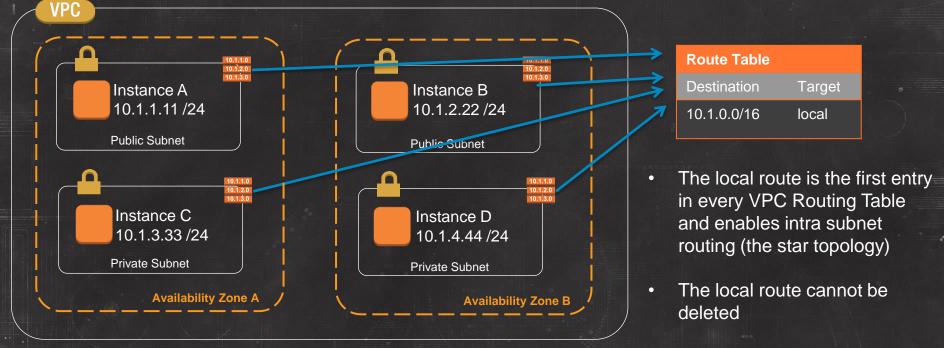
Plan your VPC IP space before creating it


- Consider future AWS region expansion
- Consider future connectivity to corporate networks
- Consider subnet design
- VPC can be /16 down to /28
- CIDR cannot be modified once created
- Overlapping IP spaces = future headache


resinvent

 Public and Private subnets are a common logical isolation

- At this point in VPC configuration, Public and Private are just indicators of the subnet purpose
- Several additional elements must be configured before traffic can egress the VPC


- Subnet size should be considered relative to subnet purpose and not the Layer 2 limits of traditional switched networks
- For subnets containing large, dynamic workloads, subnet size might be many 1000s of instances
- Traditional subnet constraints such as broadcast domain limits do not apply in VPC

resinvent

- By default, every subnet can route to every other subnet in a VPC
- A virtual router forms this star topology between all VPC subnets
- The VPC DHCP Service hands out the virtual router address as the default gateway to every instance booting in a VPC subnet
- Virtual Router always takes the .1 address of every VPC subnet

VPC CIDR: 10.1.0.0/16

ie:Invent

4000

Leave the Main Route Table Alone

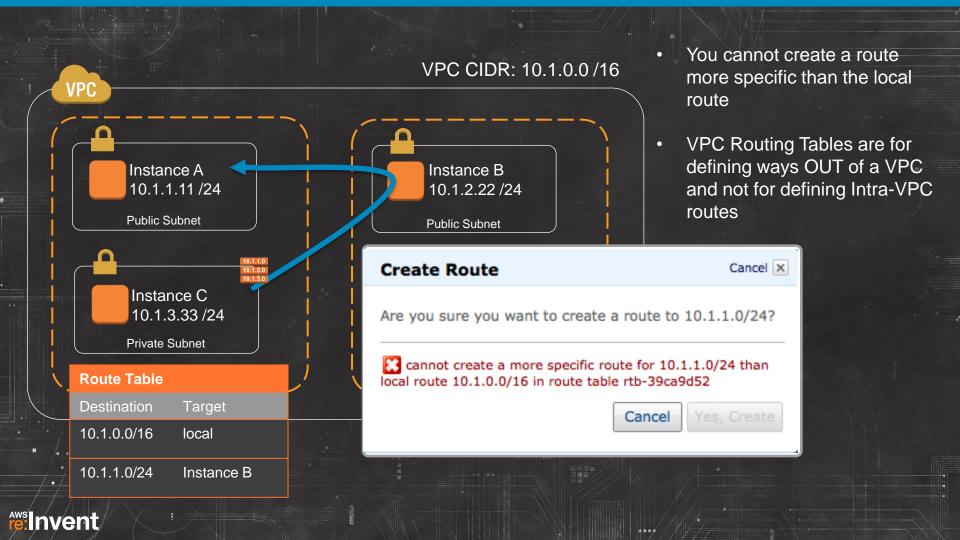
Route Table ID	Associated With	Main	VPC
rtb-39ca9d52	0 Subnets	Yes	vpc-3bca9d50 (10.1.0.0/16)

Route Table: rtb-39ca9d52

Routes	Associations	Route Propagation Tags	
Subnet			Actions
Select a	subnet	\$	Associate

The following subnets have not been associated with any route tables and are therefore using the Main table routes:

- subnet-6af6a101 (10.1.4.0/24)
- subnet-2ff7a044 (10.1.1.0/24)
- subnet-8ef7a0e5 (10.1.3.0/24)
- subnet-d4f7a0bf (10.1.2.0/24)


resinvent

Leave the Main Route Table Alone

- Upon creation, every subnet is associated with the Main Route Table
- Only after subnet creation can you modify the Route Table assigned to a subnet
- So leave Main Route Table with only the local route and eliminate the possibility of a subnet being given routes it shouldn't

Network ACLs vs Security Groups

NACLS

^{res}Invent

- Applied to subnets (1 per)
- Stateless
- Allow & Deny (blacklist)

Network ACL

Rules processed in order

Security Groups

Applied to instance ENI (up to 5 per)

Elastic Network Instance

- Stateful
- Allow Only (whitelist)
- Rules evaluated as a whole
- SGs can reference other SGs in same VPC

VPC Network ACLs: What are they good for?

- Enforcing baseline security policy
 - Example:
 - "No TFTP, NetBIOS or SMTP shall egress this subnet"
- Catch all for holes in instance security groups
- Segregation of security between network ops and dev ops

^{ws}Invent/

Instance

VPC Subnet

VPC Network ACLs: Best Practices

- Use sparingly, keep it simple
- Egress security policies are best
- Create rule #'s with room to grow
- Use IAM to tightly control who can alter or delete NACLs

Pushing this will Hurt!

Default Network ACL:

resinvent

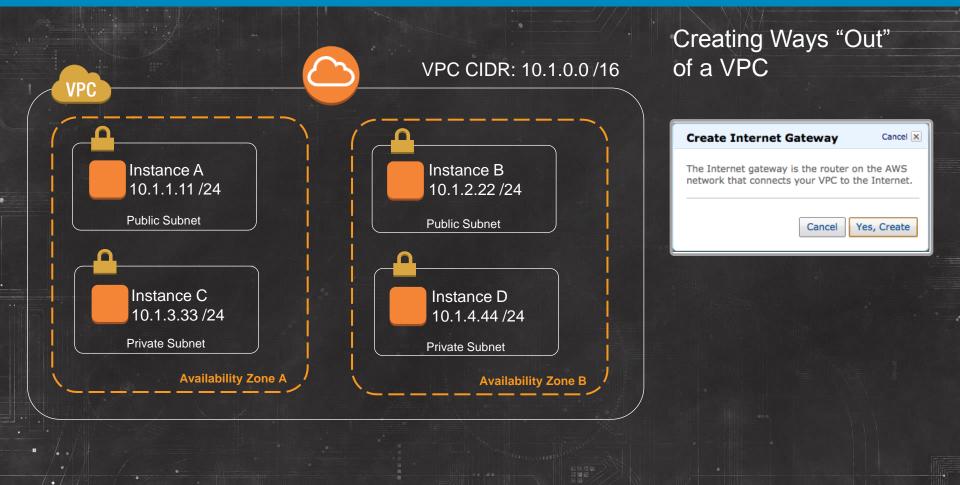
Rule #	Port (Service)	Protocol	Source	Allow/Deny	Action
100	ALL	ALL	0.0.0/0	ALLOW	Delete
*	ALL	ALL	0.0.0/0	DENY	

^{res}Invent

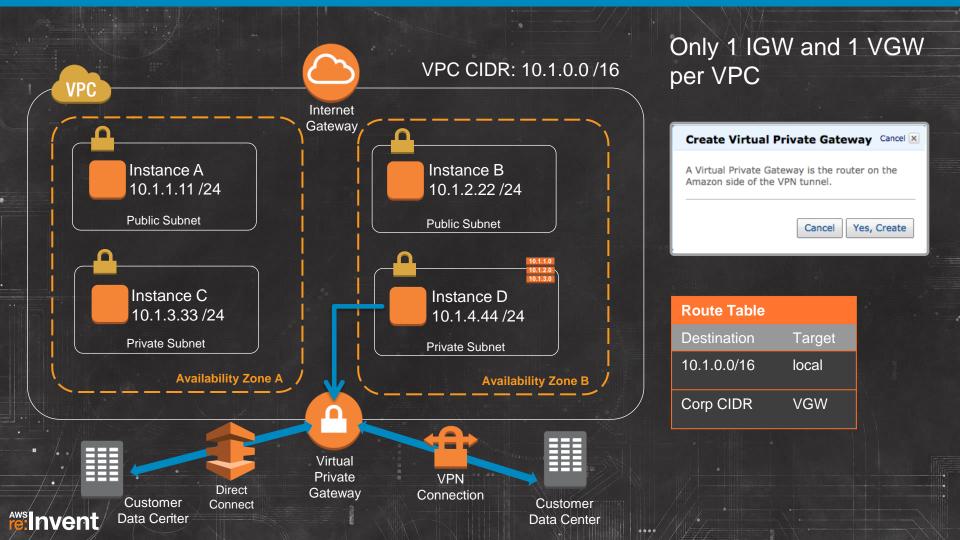
Create an IAM VPC Admin Group

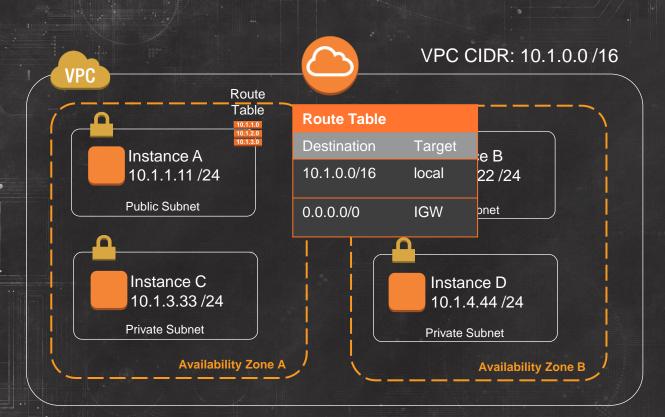
Examples of "High Blast Radius" VPC API calls that should be restricted:

Vew Support Resource Permissions AttachInternetGateway **AssociateRouteTable** CreateRoute DeleteCustomerGateway DeleteInternetGateway DeleteNetworkAcl DeleteNetworkAclEntry **DeleteRoute** DeleteRouteTable DeleteDhcpOptions ReplaceNetworkAclAssociation **DisassociateRouteTable**


Example IAM Policy for NACL Admin

```
"Version": "2012-10-17",
"Statement": [
   "Effect": "Allow",
   "Action": [
     "ec2:DeleteNetworkAcl",
     "ec2:DeleteNetworkAclEntry"
   "Resource": "arn:aws:ec2:us-west-2:123456789012:network-ac1/*",
   "Condition": {
     "StringEquals": {
       "ec2:ResourceTag/Environment": "prod"
     }.
        "Null": {
        "aws:MultiFactorAuthAge": "false"
```


Multi Factor Authentication required for Actions in Policy



iinvent

re:Invent

Three Elements Required to Egress VPC from IGW:

- 1. Internet Gateway must be associated to VPC
- 2. Subnet must be associated to a Routing Table with a route to the IGW
- Instances in the subnet that will egress VPC must be associated with a Public IP

Ways to Assign Public IPs

Elastic IP (EIP)

- Associated with AWS account and not a specific instance
- 1 Public IP to 1 Private IP static NAT mapping
- Instance does not "see" an EIP associated to it
- Persists independent of the instance
- Can be assigned while instance is stopped or running
- Can be moved, reassigned to other ENIs

Ways to Assign Public IPs

Automatic dynamic Public IP assignment

- Done on instance launch into VPC subnet
- Public IP is dynamic and could change if instance is stopped and restarted
- Does not count against AWS Account EIP limits
- Works only on instances with a single ENI

Network	i	vpc-3bca9d50 (10.1.0.0/16) ReInvent VPC 1 +	C	Create new VPC
Subnet	(j)	subnet-2ff7a044(10.1.1.0/24) us-west-2a 251 IP Addresses available		Create new subnet
Public IP	(j)	Automatically assign a public IP address to your instances		

Internet

ment

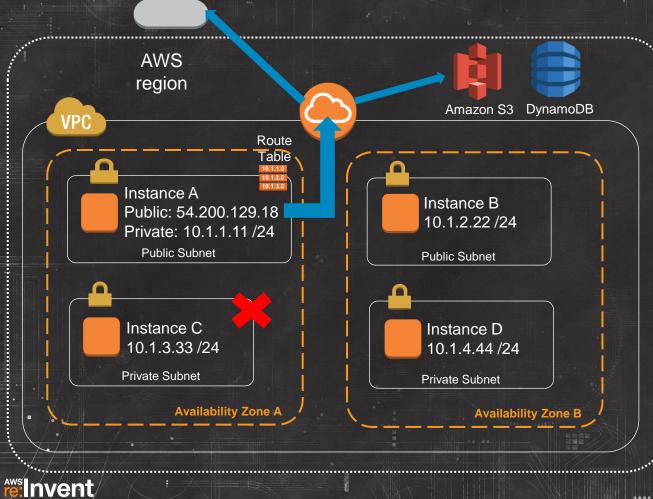
AWS region Amazon S3 DynamoDB VPC Route Table 10.1.3. Instance A Instance B Public: 54.200.129.18 10.1.2.22/24 Private: 10.1.1.11 /24 **Public Subnet Public Subnet** Instance C Instance D 10.1.3.33/24 10.1.4.44 /24 Private Subnet **Private Subnet Availability Zone Availability Zone B**

AWS outside the VPC

 Services such as S3 and Dynamo DB are Regional and accessible only via Public End Points

•

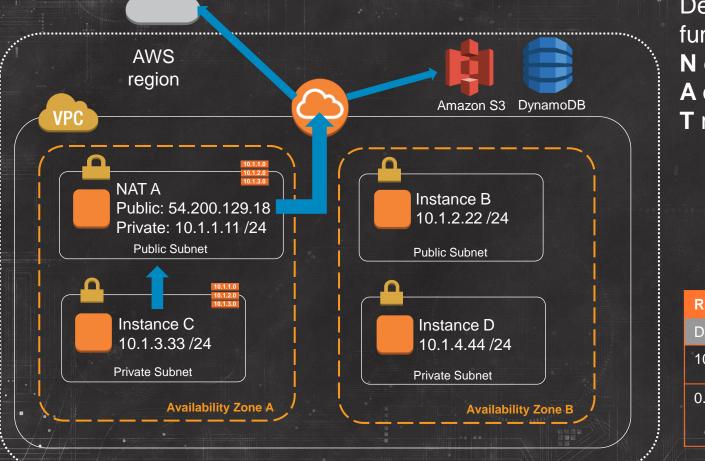
Resources in a VPC requiring access to Regional services must be able to egress the VPC into the Public AWS network


Examples of AWS outside the VPC

AWS API Endpoints

- Think about which APIs you might be calling from instances within the VPC
- Good examples: Amazon EC2, AWS CloudFormation, Auto Scaling, Amazon SWF, Amazon SQS, Amazon SNS
- Regional Services
 - Amazon S3
 - Amazon Dynamo DB
- Software and Patch Repositories
 - Amazon Linux repo allows access only from AWS public IP blocks

Internet



And what if instance C in a private subnet needs to reach outside the VPC?

It has no route to the IGW and no public IP.

Internet

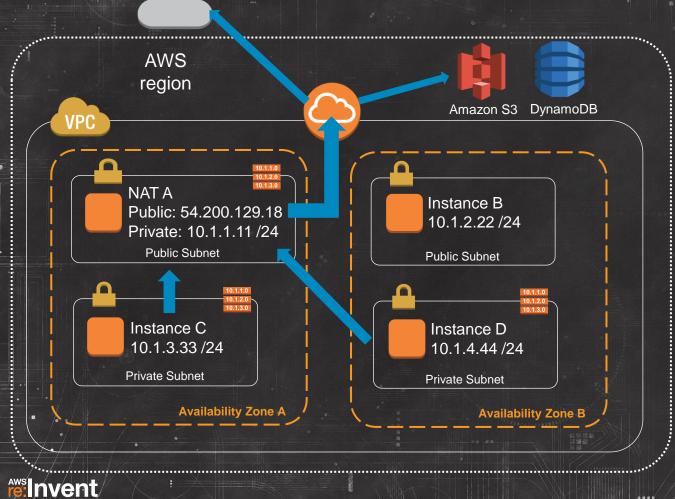
resinvent

Deploy an instance that functions as a **N** etwork **A** ddress **T** ranslat(or)

Route Table	
Destination	Target
10.1.0.0/16	local
0.0.0/0	NAT instanc e

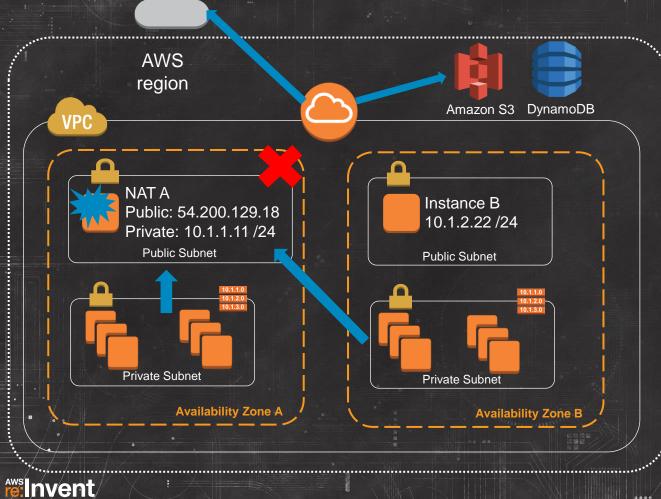
...

What makes up the Amazon Linux NAT AMI?


Not much to it:

- 1. IP forwarding enabled
- 2. IP NAT Masquerading enabled in iptables
- 3. Source / Destination check is turned off on the instance

\$echo 1 > /proc/sys/net/ipv4/ip_forward \$echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects \$/sbin/iptables -t nat -A POSTROUTING -o eth0 -s 10.1.0.0/16 -j MASQUERADE \$/sbin/iptables-save \$aws ec2 modify-instance-attributes -instance-id i-xxxxxxxx -source-destcheck "{\"Value\":false}"

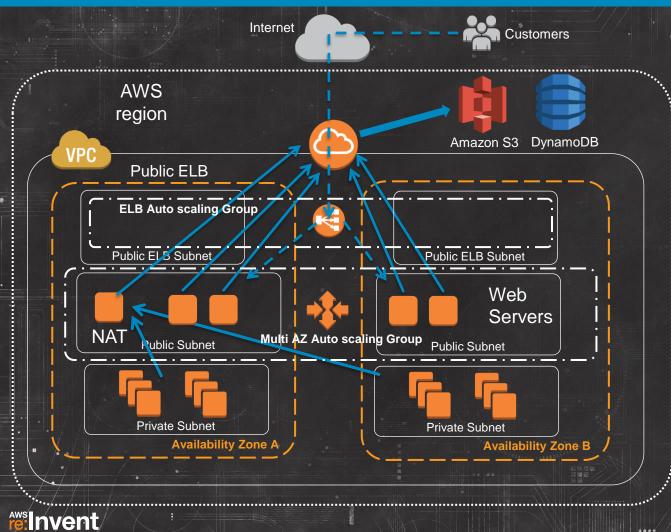

Internet

Other private subnets can share the same routing table and use the NAT

But...

Internet

... you could reach a bandwidth bottleneck if your private instances grow and their NAT bound traffic grows with them.


Scalable and Available NAT

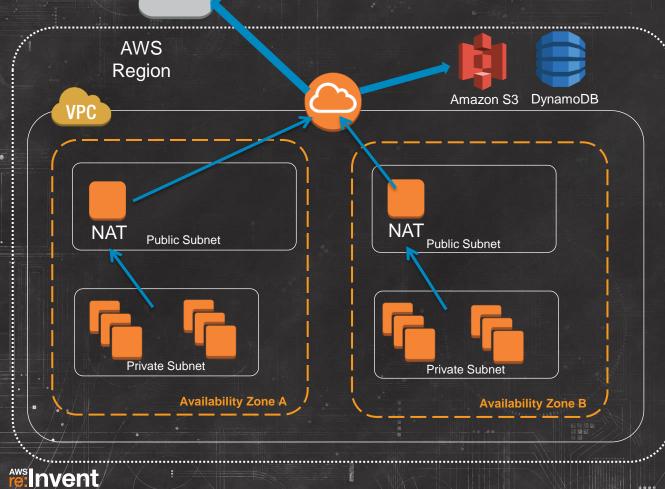
Do bandwidth intensive processes need to be behind a NAT?

- Separate out application components with bandwidth needs
- Run components from public subnet instances
- Goal is full instance bandwidth out of VPC
- Auto Scaling with Public IP makes this easy
- NAT still in place for remaining private instances
- Most Common use case: Multi-Gbps streams to Amazon S3

Direct to Amazon S3

- Image processing app with high outbound network to Amazon **S**3
- Public ELB receives incoming customer HTTP/S requests
- Auto Scaling assigns public IP to new web servers
- With public IPs, web servers initiate outbound requests directly to Amazon S3
- · NAT device still in place for private subnets

...


Autoscaling Support for Automatic Public IP Assignment

Sample Launch Configuration (named "hi-bandwidth-public"):

\$aws autoscaling create-launch-configuration --launch-configuration-name hi-bandwidth
public --image-id ami-xxxxxxxx --instance-type m1.xlarge --associate-public-ip-address

Internet

Autoscale HA NAT

- Use Auto Scaling for NAT Availability
- Create 1 NAT per AZ •
- · All private subnet route tables to point to same AZ NAT
- 1 Auto Scaling group per NAT with min and max size set to 1
- Let Auto Scaling monitor the health and availability of your NATs
- If NAT fails, user data script in Autoscaling Launch config programmatically updates private subnet route tables to point to new NAT instance ID

...

Auto Scaling for Availability

Sample HA NAT Autoscaling group (named "ha-nat-asg"):

\$aws autoscaling create-auto-scaling-group --auto-scaling-group-name ha
nat-asg --launch-configuration-name ha-nat-launch --min-size 1 --max-size
1 --vpc-zone-identifier subnet-xxxxxxx

Automating HA NAT with EC2 User Data

Latest version of the HA NAT User Data script on GitHub:

https://github.com/ralex-aws/vpc

IAM EC2 Role for HA NAT Instance

```
"Version": "2012-10-17",
"Statement": [
    "Effect": "Allow",
    "Action": [
      "ec2:DescribeInstances",
      "ec2:ModifyInstanceAttribute",
      "ec2:DescribeSubnets",
      "ec2:DescribeRouteTables",
      "ec2:CreateRoute",
      "ec2:ReplaceRoute"
    "Resource": "*"
```

Tag Early, Tag Often!

- Tagging strategy should be part of early design
- Project Code, Cost Center, Environment, Team, Business Unit
- Tag resources right after creation
- Tags supported for resource permissions
- AWS Billing also supports tags
 - Tight IAM controls on the creation and editing of tags

0

VP

Tip

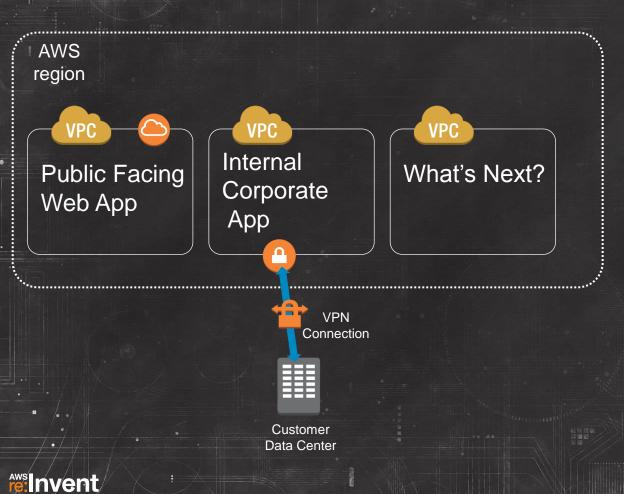
Finally, if design requirements keep high bandwidth streams behind NAT:

- Use the 1 HA NAT per AZ design
- Vertically scale your NAT instance type to one with a High Network Performance rating
- Keep a close watch on your network metrics

t1.micro Very Low m1.small Low

m1.large Moderate m1.xlarge, c1.xlarge High

For further HA NAT design alternatives, please see:


High Availability for Amazon VPC NAT Instances http://aws.amazon.com/articles/2781451301784570

Deploy HA NAT With Cloudformation Templates: http://aws.amazon.com/articles/6079781443936876

One VPC, Two VPC

Considering Multiple VPCs

- Public Facing Web App deployed in own VPC
- Now want to deploy an internal only Corporate App connected to Corporate Datacenter via VPN
- New VPC created in the Region for Corporate app to keep the external and internal applications isolated from each other

Common Multi-VPC Customer Use Cases:

- Application isolation
- Scope of audit containment
- Risk level separation
- Separate production from non-production
- Multi tenant isolation
- Business unit alignment

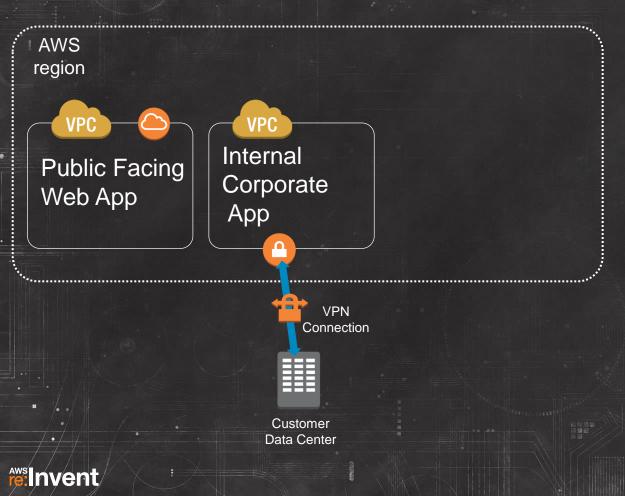
Considerations for One or Many VPCs:

- Know your inter-VPC traffic
- Separate AWS accounts by definition means separate VPCs
- IAM / resource permissions and controls

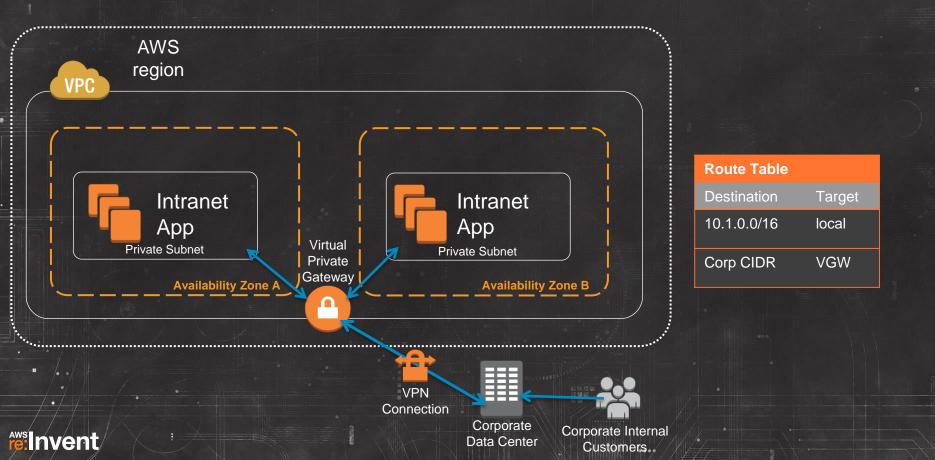
• VPC limits:

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html

There is a whole talk on this one!


CPN208 Selecting the Best VPC Network Architecture

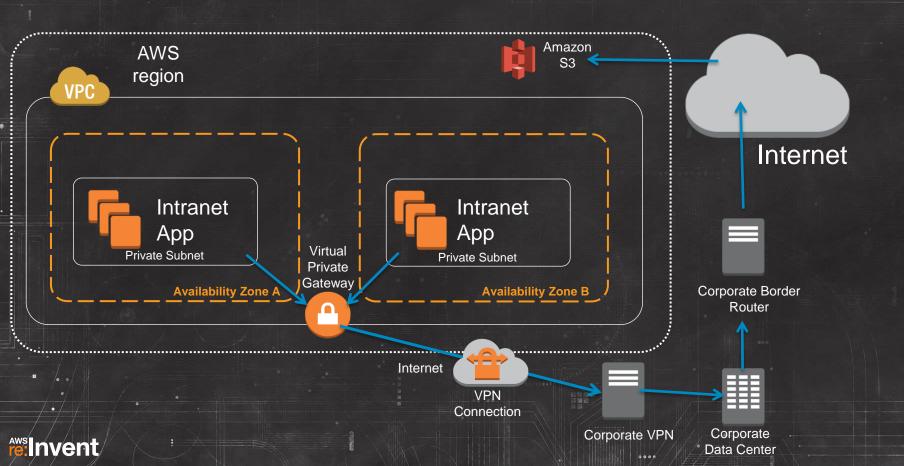
Controlling the Border



Internal Application to VPC

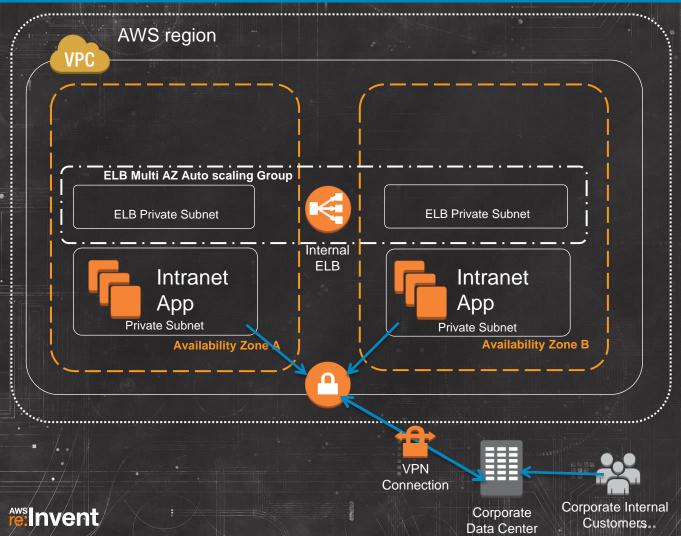
....

Internal Application to VPC



But... app will leverage this for storing data:

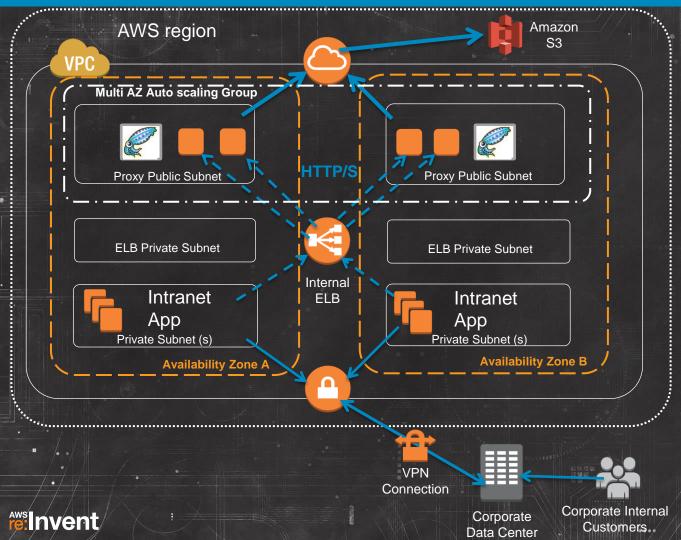
Amazon S3


And you don't really want to do this:

Control IGW Access through a Proxy Layer

- Deploy a proxy control layer between application and IGW
- Restrict all outbound HTTP/S access to only approved URL destinations like Amazon S3
- No route to IGW for private subnets
- Control access to proxy through security groups
- Must configure proxy setting in OS of instances

Controlling the Border


- Deploy internal ELB layer across AZs
- Add all instances allowed outside access to a security group
- Use this security group as the only source allowed access to the proxy port in the load balancer's security group

Put load balancers in their own subnets

- Elastic Load Balancing is Amazon EC2 in your subnets
- Elastic Load Balancing is using your private addresses
- Separate subnets = separate control
- Distinguish LB layer from app layers

VPC

Controlling the Border

- Squid Proxy layer deployed between internal load balancer and the IGW border.
- Only proxy subnets have route to IGW.
- Proxy security group allows inbound only from Elastic Load Balancing security group.
- Proxy restricts which URLs may pass. In this example, s3.amazonaws.com is allowed.
- Egress NACLs on proxy subnets enforce HTTP/S only.

Squid.conf Sample Config:

CIDR AND Destination Domain based Allow

CIDR Subnet blocks for Internal ELBs
acl int_elb_cidrs src 10.1.3.0/24 10.1.4.0/24

Destination domain for target S3 bucket
acl s3_v2_endpoints dstdomain \$bucket_name.s3.amazonaws.com

Squid does AND on both ACLs for allow match
http_access allow int_elb_cidrs s3_v2_endpoints

Deny everything else
http_access deny all

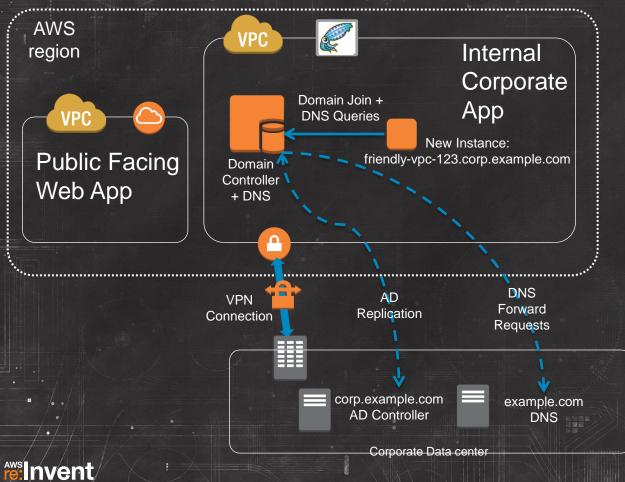
felnvent

0000/-

Using Squid Proxy Instances for Web Service Access in Amazon VPC:

http://aws.amazon.com/articles/5995712515781075

... and this design could also be an option to our earlier NAT bandwidth discussion if outbound traffic requirements are HTTP only.



Directory and Name Services in the VPC

...or what do you mean ip-10-1-1-57.us-west-2.compute.internal isn't a "friendly" name?

Active Directory + DNS in the VPC

- Domain Controllers launched in internal VPC
- Internal VPC instances join domain upon launch
- Instances use Dynamic DNS to register both A and PTR records
- Domain controller replicates
 with Corporate AD servers
- VPC DNS forwarding to corporate DNS

....

DNS in the VPC

• Enable automatic DNS hostname creation and resolution with these 2 options:

VPC: vpc-3bca9d50			
	DNS Settings Tags		
		Settings	
	☑	Enable DNS resolution.	
		Enable DNS hostname support for instances launched in this VPC.	

Automatic hostname creation
Private only instances assigned private hostname
Public instances assigned public and private

Split DNS Resolution

Example hostnames for Public VPC instance: ec2-54-200-171-240.us-west-2.compute.amazonaws.com ip-10-1-1-87.us-west-2.compute.internal

From outside VPC:

a82066136617:~ ralex\$ nslookup ec2-54-200-171-240.us-west-2.compute.amazonaws.com Server: 192.168.1.1 Address: 192.168.1.1#53

Non-authoritative answer: Name: ec2-54-200-171-240.us-west-2.compute.amazonaws.com Address: 54.200.171.240

From inside VPC:

resinvent

[ec2-user@ip-Server: Address:

Non-authoritative answer: Name: ec2–54–200–171–240.us-west–2.compute.amazonaws.com Address: 10.1.1.87

- Private hostnames only resolvable within VPC
- Public hostnames will resolve to private IP addresses within the VPC
- 10.1.0.2 represents the VPC Virtual DNS Service and will always take the .2 address of your VPC CIDR block
- VPC Virtual DNS Service is also called "AmazonProvidedDNS" and enables instances in a VPC to resolve public DNS names

DHCP Option Sets

Create DHCP Options Set

Optionally, specify any of the following.

Dynamic Host Configuration Protocol (DHCP) is a protocol used to retrieve IP address assignments and other configuration information.

domain-name Enter the domain name that should be used for your hosts, for example, mybusiness.com.

corp.example.com

domain-name-servers Enter up to 4 DNS server IP addresses, separated by commas, for example, 172.16.16.16, 10.10.10.10

10.1.3.10,10.1.4.10

ntp-servers Enter up to 4 NTP server IP addresses, separated by commas.

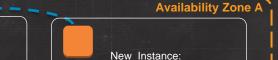
netbios-name-servers Enter up to 4 NetBIOS server IP addresses, separated by commas.

10.1.3.10,10.1.4.10

netbios-node-type Enter the NetBIOS node type, for example, 2.

2

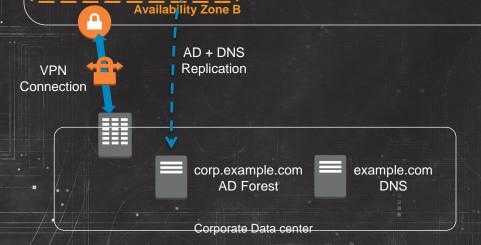

re: Invent


Cancel Yes, Create

Cancel D

- Not possible to replace the VPC DHCP service with your own
- But it is possible to customize what VPC DHCP hands out
- Default option set only contains DNS = "AmazonProvidedDNS"
- 1 option set assigned per VPC
- Changing option set dynamically applies the next time an instance requests a lease refresh

New Instance Domain Registration



Private Subnet

domain-name-servers

172.16.16.16, 10.10.10.10 10.1.3.10, 10.1.4.10

Dynamic DNS without Microsoft DHCP:

Advanced TCP/IP Settings	? ×		
IP Settings DNS WINS			
DNS suffix for this connection: corp.example.com			
Register this connection's addresses in DNSUse this connection's DNS suffix in DNS registration			

resinvent

VPC

New VPC

DC 1

10.1.3.10

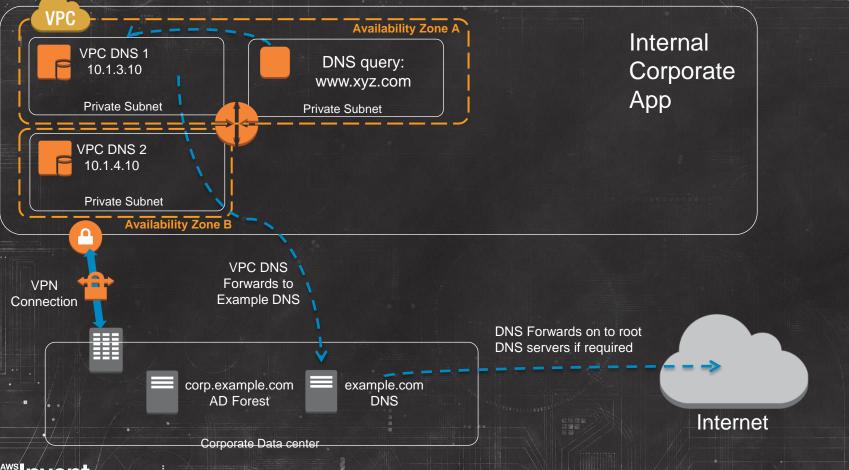
New VPC

DC 2

10.1.4.10

Private Subnet

Private Subnet


Sample Powershell user-data for AD instance add and rename:

<powershell>

\$secstr = convertto-securestring -string "Password123" -AsPlainText -Force \$cred = new-object -typename System.Management.Automation.PSCredential -argumentlist domain-add, \$secstr \$instanceId = (Invoke-WebRequest -Uri http://169.254.169.254/latest/meta-data/instance-id).Content \$servername = (Get-EC2Tag -Region us-west-2 | Where-Object {\$_.ResourceId -eq \$instanceId -and \$_.Key -eq "Name"}).Value Add-Computer -DomainName "corp.example.com" -NewName \$servername -Credential \$cred -Restart

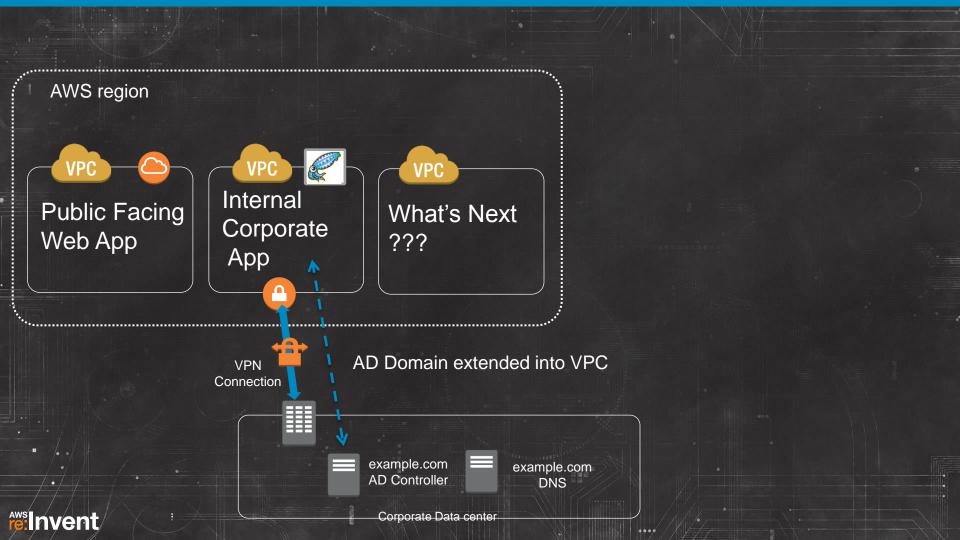
DNS Query Path

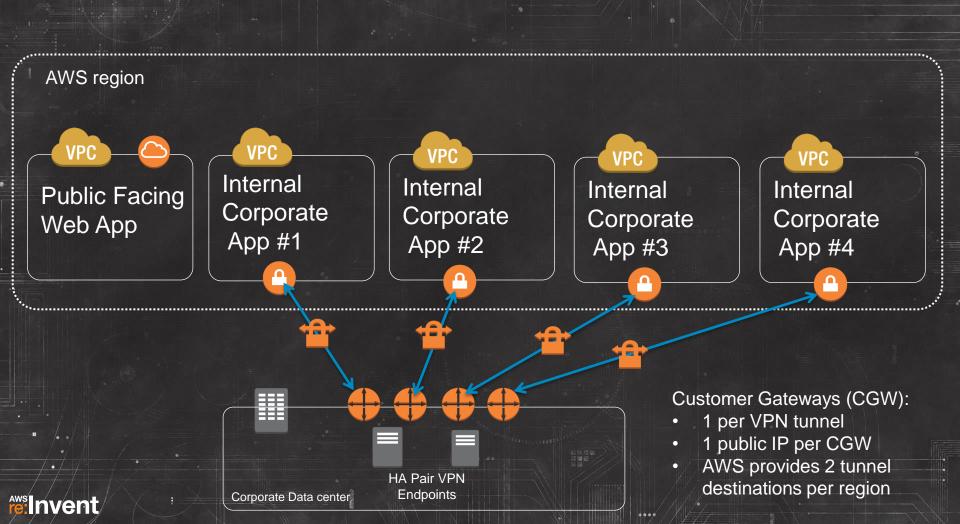
*ivis*Invent

....

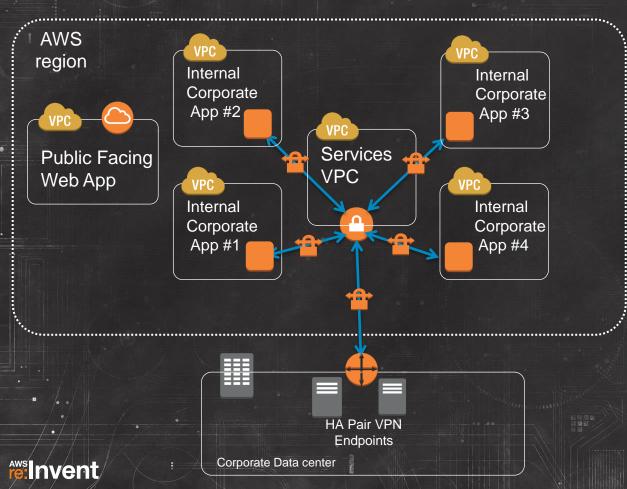
For AWS CloudFormation templates and guides to setting up Microsoft AD domains in VPC, please see:

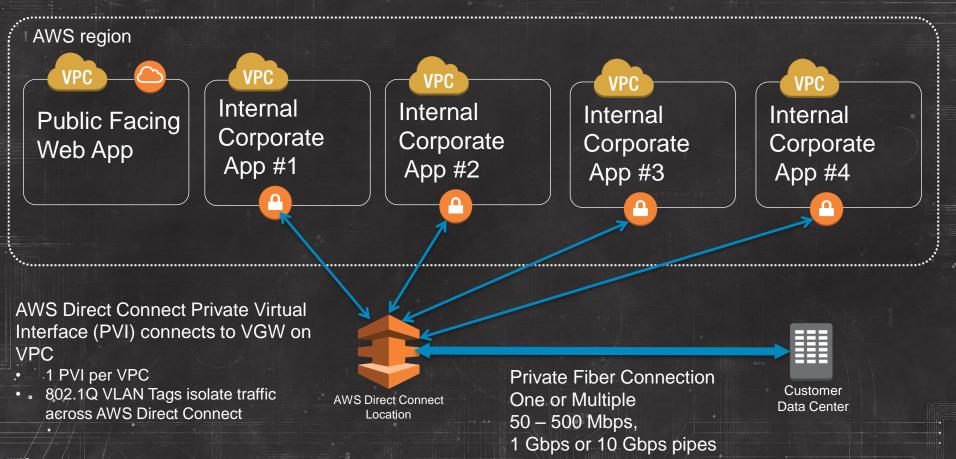
Deploy a Microsoft SharePoint 2010 Server Farm in the AWS Cloud in 6 Simple Steps: http://aws.amazon.com/articles/9982940049271604


Implementing Microsoft Windows Server Failover Clustering (WSFC) and SQL Server 2012 AlwaysOn Availability Groups in the AWS Cloud http://aws.amazon.com/whitepapers/microsoft-wsfc-sql-alwayson/


Microsoft Exchange Server 2010 in the AWS Cloud: Planning & Implementation Guide: http://media.amazonwebservices.com/AWS Exchange Planni mplementation Guide.pdf

resinvent


Bringing It All Back Home



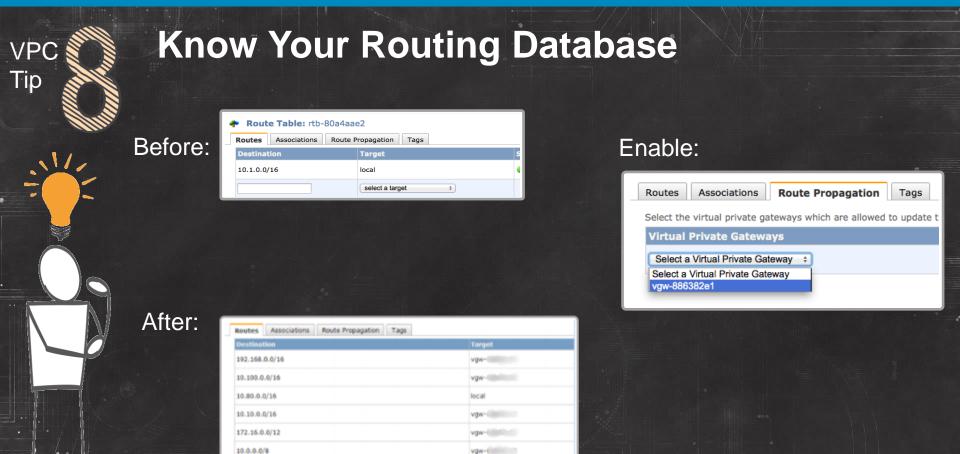
VPN Hub and Spoke an option...

- Amazon EC2 VPN instances to central virtual private gateway
- For HA, 2 Amazon EC2-based VPN endpoints in each spoke
- Control VPC contains common services for all app VPCs
- Dynamic Routing protocol (BGP, OSPF) between Spokes and Hub
- If multi Gbps traffic flow to Corporate Datacenter, then IPSec tunnels could become bandwidth bottleneck

... or simplify with AWS Direct Connect

resinvent

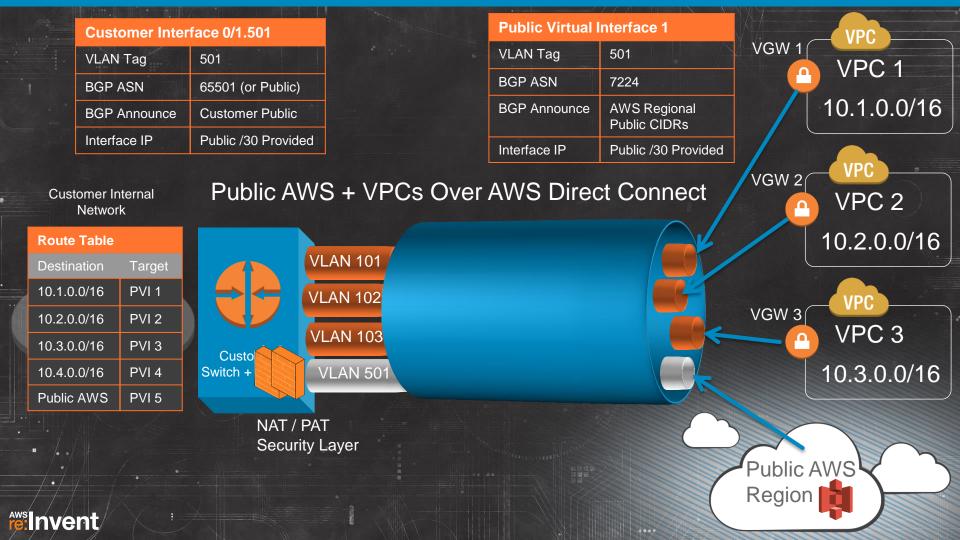
....

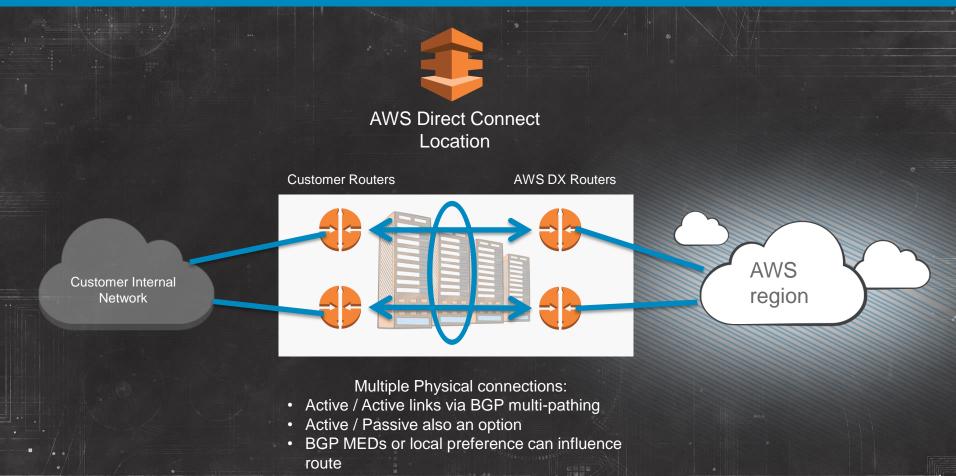

A few bits on AWS Direct Connect...

- Dedicated, private pipes into AWS
- Create private (VPC) or public interfaces to AWS
- Cheaper data out rates than Internet (data in still free)
- Consistent network performance compared to Internet
- At Least 1 location to each AWS region (even GovCloud!)
- Recommend redundant connections
- Multiple AWS accounts can share a connection

- FOX	S					•			
	Customer Interf			face 0/1.101		Private Virtual Interface 1		jA.	VPC
	1.	VLAN	Tag	101		VLAN Tag	101	VGW 1	VPC 1
		BGP ASN		65001		BGP ASN	7224		
		BGP Announce		Customer Internal	tomer Internal		10.1.0.0/16		10.1.0.0/16
		Interfa	ace IP	169.254.251.6/30		Interface IP	169.254.251.5/30		
		omer Internal Network		M	ultiple VPCs Ove	er AWS Dire	ect Connect	VGW 2	VPC VPC 2
	Route Table								10.2.0.0/16
	Destination Target				VLAN 101				
7	10.1.0.	I.0.0/16 PVI 1 🔁 💳 VLAN 102							VPC
	10.2.0.	0/16	PVI 2		VLAN 103			VGW 3	VPC 3
	10.3.0.	0/16	PVI 3	Customer Switch + Router					
	10.4.0.	.4.0.0/16 PVI 4			VLAN 104				10.3.0.0/16
••	·].							VGW 4	VPC
									VPC 4
NS 2	nve:	nt							10.4.0.0/16

AW


resinvent

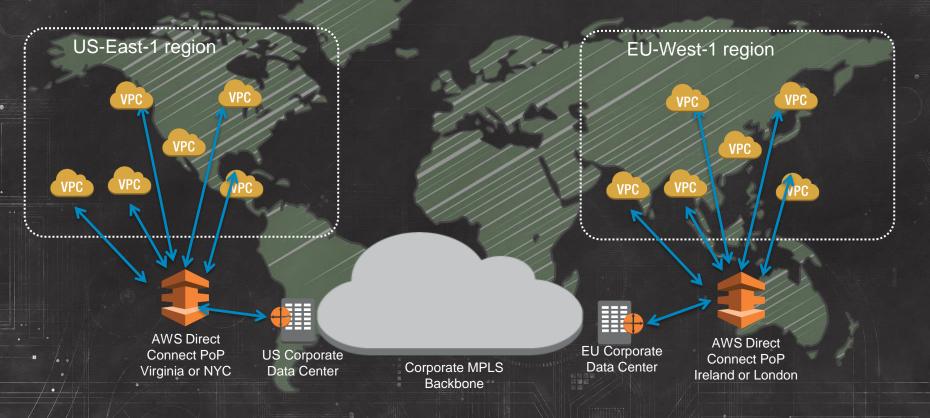


Know Your Routing Database

- Keep track of all incoming BGP announcements into your VPCs
- Create a new Routing Table, unassigned to any subnet, and enable Route Propagation
- Routing Table will show all routes the VGW has learned through BGP announcements
- See what the VGW sees

 Bidirectional Forwarding Detection (BFD) supported

*ivis*Invent


Going Global

US-East-1 AWS region **AWS Direct Connect** Customer Routers Routers **Customer Global MPLS Backbone AWS Direct Connect** Network Location: Ireland or London EU-West-1 AWS region AWS DX Customer Routers Routers *ivis*Invent

....

AWS Direct Connect

Location: Virginia or NYC With AWS regions just another spoke on your global network, it's easy to bring the cloud down to you as you expand around the world.

resinvent

Evolving VPC Design: Recap

- Elements of VPC Design
- Scalable and Available NAT
- One VPC, Two VPC
- Controlling the Border
- Directory and Name Services in the VPC
- Bringing It All Back Home

re Invent

Related re:Invent Sessions:

ARC202 High Availability Application Architectures in Amazon VPC

ARC304 Cloud Architectures with AWS Direct Connect

CPN205 Securing Your Amazon EC2 Environment with AWS IAM Roles and Resource-Based Permissions

CPN208 Selecting the Best VPC Network Architecture

DMG201 Zero to Sixty: AWS CloudFormation

DMG303 AWS CloudFormation under the Hood

aws invent

Please give us your feedback on this presentation

ARC401

As a thank you, we will select prize winners daily for completed surveys!

